
This book is licensed under a Creative Commons Attribution 3.0 License

2. Graphics primitives and
environments

Learning objectives:

• turtle graphics

• QuickDraw: A graphics toolbox

• frame program

• interactive graphics input/output

• example: polyline input

Turtle graphics: a basic environment

Seymour Papert [Pap80] introduced the term turtle graphics to denote a set of primitives for line drawing.

Originally implemented in the programming language Logo, turtle graphics primitives are now available for several

computer systems and languages. They come in different versions, but the essential point is the same as that

introduced in the example of the robot car: The pen (or "turtle") is a device that has a state (position, direction) and

is driven by incremental operations “move” and “turn” that transform the turtle to a new state depending on its

current state:

move(s) { take s unit steps in the direction you are facing }
turn(d) { turn counterclockwise d degrees }

The turtle's initial state is set by the following operations:

moveto(x,y) { move to the position (x,y) in absolute coordinates }
turnto(d) { face d degrees from due east }

In addition, we can specify the color of the trail drawn by the moving pen:

pencolor(c) { where c = white, black, none, etc. }

Example

The following program fragment approximates a circle tangential to the x-axis at the origin by drawing a 36-

sided polygon:

moveto(0, 0); { position pen at origin }
turnto(0); { face east }
step := 7; { arbitrarily chosen step length }
do 36 times { 36 sides · 10° = 360° }

{ move(step); turn(10) } { 10 degrees counterclockwise }

In graphics programming we are likely to use basic figures, such as circles, over and over again, each time with a

different size and position. Thus we wish to turn a program fragment such as the circle approximation above into a

reusable procedure.

Algorithms and Data Structures 14 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

Procedures as building blocks

A program is built from components at many different levels of complexity. At the lowest level we have the

constructs provided by the language we use: constants, variables, operators, expressions, and simple (unstructured)

statements. At the next higher level we have procedures: they let us refer to a program fragment of arbitrary size

and complexity as a single entity, and build hierarchically nested structures. Modern programming languages

provide yet another level of packaging: modules, or packages, useful for grouping related data and procedures. We

limit our discussion to the use of procedures.

Programmers accumulate their own collection of useful program fragments. Programming languages provide

the concept of a procedure as the major tool for turning fragments into reusable building blocks. A procedure

consists of two parts with distinct purposes:

1. The heading specifies an important part of the procedure's external behavior through the list of formal

parameters: namely, what type of data moves in and out of the procedure.

2. The body implements the action performed by the procedure, processing the input data and generating the

output data.

A program fragment that embodies a single coherent concept is best written as a procedure. This is particularly

true if we expect to use this fragment again in a different context. The question of how general we want a procedure

to be deserves careful thought. If the procedure is too specific, it will rarely be useful. If it is too general, it may be

unwieldy: too large, too slow, or just too difficult to understand. The generality of a procedure depends primarily on

the choice of formal parameters.

Example: the long road toward a procedure “circle”

Let us illustrate these issues by discussing design considerations for a procedure that draws a circle on the

screen. The program fragment above for drawing a regular polygon is easily turned into

procedure ngon(n,s: integer); { n = number of sides, s = step
size }

var i,j: integer;

begin

j := 360 div n;

for i := 1 to n do { move(s); turn(j) }

end;

But, a useful procedure to draw a circle requires additional arguments. Let us start with the following:

procedure circle(x, y, r, n: integer);

{ centered at (x, y); r = radius; n = number of sides }
var a, s, i: integer; { angle, step, counter }
begin

moveto(x, y – r); { bottom of circle }
turnto(0); { east }
a := 360 div n;

s := r · sin(a); { between inscribed and circumscribed polygons }
for i := 1 to n do { move(s); turn(a) }

end;

This procedure places the burden of choosing n on the programmer. A more sophisticated, "adaptive" version

might choose the number of sides on its own as a function of the radius of the circle to be drawn. We assume that

lengths are measured in terms of pixels (picture elements) on the screen. We observe that a circle of radius r is of

15

This book is licensed under a Creative Commons Attribution 3.0 License

length 2πr. We approximate it by drawing short-line segments, about 3 pixels long, thus needing about 2·r line

segments.

procedure circle(x, y, r: integer); { centered at (x, y); radius
r}

var a, s, i: integer; { angle, step, counter }
begin

moveto(x, y – r); { bottom of circle }
turnto(0); { east }
a := 180 div r; { 360 / (# of line segments) }
s := r · sin(a); { between inscribed and circumscribed polygons }
for i := 1 to 2 · r do { move(s); turn(a) }

end;

This circle procedure still suffers from severe shortcomings:

1. If we discretize a circle by a set of pixels, it is an unnecessary detour to do this in two steps as done above:

first, discretize the circle by a polygon; second, discretize the polygon by pixels. This two-step process is a

source of unnecessary work and errors.

2. The approximation of the circle by a polygon computed from vertex to vertex leads to rounding errors that

accumulate. Thus the polygon may fail to close, in particular when using integer computation with its

inherent large rounding error.

3. The procedure attempts to draw its circle on an infinite screen. Computer screens are finite, and attempted

drawing beyond the screen boundary may or may not cause an error. Thus the circle ought to be clipped at

the boundaries of an arbitrarily specified rectangle.

Writing a good circle procedure is a demanding task for professionals. We started this discussion of desiderata

and difficulties of a simple library procedure so that the reader may appreciate the thought and effort that go into

building a useful programming environment. In chapter 14 we return to this problem and present one possible goal

of "the long road toward a procedure 'circle'". We now make a huge jump from the artificially small environments

discussed so far to one of today's realistic programming environments for graphics

QuickDraw: a graphics toolbox

For the sake of concreteness, the next few sections show programs written for a specific programming

environment: MacPascal using the QuickDraw library of graphics routines [App 85]. It is not our purpose to

duplicate a manual, but only to convey the flavor of a realistic graphics package and to explain enough about

QuickDraw for the reader to understand the few programs that follow. So our treatment is highly selective and

biased.

Concerning the circle that we attempted to program above, QuickDraw offers five procedures for drawing circles

and related figures:

procedure FrameOval(r: Rect);

procedure PaintOval(r: Rect);

procedure EraseOval(r: Rect);

procedure InvertOval(r: Rect);

procedure FillOval(r: Rect; pat: Pattern);

Each one inscribes an oval in an aligned rectangle r (sides parallel to the axes) so as to touch the four sides of r.

If r is a square, the oval becomes a circle. We quote from [App 85]:

Algorithms and Data Structures 16 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

FrameOval draws an outline just inside the oval that fits inside the specified rectangle, using the current

grafPort's pen pattern, mode, and size. The outline is as wide as the pen width and as tall as the pen height.

It's drawn with the pnPat, according to the pattern transfer mode specified by pnMode. The pen location is

not changed by this procedure.

Right away we notice a trade-off when comparing QuickDraw to the simple turtle graphics environment we

introduced earlier. At one stroke, “FrameOval” appears to be able to produce many different pictures, but before we

can exploit this power, we have to learn about grafPorts, pen width, pen height, pen patterns, and pattern transfer

modes. 'FrameOval' draws the perimeter of an oval, 'PaintOval' paints the interior as well, 'EraseOval' paints an oval

with the current grafPort's background pattern, 'InvertOval' complements the pixels: 'white' becomes 'black', and

vice versa. 'FillOval' has an additional argument that specifies a pen pattern used for painting the interior.

We may not need to know all of this in order to use one of these procedures, but we do need to know how to

specify a rectangle. QuickDraw has predefined a type 'Rect' that, somewhat ambiguously at the programmer's

choice, has either of the following two interpretations:

type Rect = record top, left, bottom, right: integer end;

type Rect = record topLeft, botRight: Point end;

with one of the interpretations of type 'Point' being

type Point = record v, h: integer end;

Exhibit 2.1 illustrates and provides more information about these concepts. It shows a plane with first

coordinate v that runs from top to bottom, and a second coordinate h that runs from left to right. (The reason for v

running from top to bottom, rather than vice versa as used in math books, is compatibility with text coordinates

where lines are naturally numbered from top to bottom.) The domain of v and h are the integers from –215= –32768

to 215– 1 = 32767. The points thus addressed on the screen are shown as intersections of grid lines. These lines and

grid points are infinitely thin - they have no extension. The pixels are the unit squares between them. Each pixel is

paired with its top left grid point. This may be enough information to let us draw a slightly fat point of radius 3

pixels at the grid point with integer coordinates (v, h) by calling

PaintOval(v – 3, h – 3, v + 3, h + 3);

Exhibit 2.1: Screen coordinates define the location of pixels.

To understand the procedures of this section, the reader has to understand a few details about two key aspects of

interactive graphics:

• timing and synchronization of devices and program execution

• how screen pictures are controlled at the pixel level

17

This book is licensed under a Creative Commons Attribution 3.0 License

Synchronization

In interactive applications we often wish to specify a grid point by letting the user point the mouse-driven cursor

to some spot on the screen. The 'procedure GetMouse(v, h)' returns the coordinates of the grid point where the

cursor is located at the moment 'GetMouse' is executed. Thus we can track and paint the path of the mouse by a

loop such as

repeat GetMouse(v, h); PaintOval(v – 3, h – 3, v + 3, h + 3)

until stop;

This does not give the user any timing control over when he or she wants the computer to read the coordinates

of the mouse cursor. Clicking the mouse button is the usual way to tell the computer "Now!". A predefined boolean

function 'Button' returns 'true' when the mouse button is depressed, 'false' when not. We often synchronize

program execution with the user's clicks by programming busy waiting loops:

repeat until Button; { waits for the button to be pressed }
while Button do; { waits for the button to be released }

The following procedure waits for the next click:

procedure waitForClick;

begin repeat until Button; while Button do end;

Pixel acrobatics

The QuickDraw pen has four parameters that can be set to draw lines or paint textures of great visual variety:

pen location 'pnLoc', pen size 'pnSize' (a rectangle of given height and width), a pen pattern 'pnPat', and a drawing

mode 'pnMode'. The pixels affected by a motion of the pen are shown in Exhibit 2.2.

Exhibit 2.2: Footprint of the pen.

Predefined values of 'pnPat' include 'black', 'gray', and 'white'. 'pnPat' is set by calling the predefined 'procedure

PenPat(pat: Pattern)' [e.g. 'PenPat(gray)']. As 'white' is the default background, drawing in 'white' usually serves for

erasing.

The result of drawing also depends critically on the transfer mode 'pnMode', whose values include 'patCopy',

'patOr', and 'patXor'. A transfer mode is a boolean operation executed in parallel on each pair of pixels in

corresponding positions, one on the screen and one in the pen pattern.

• 'patCopy' uses the pattern pixel to overwrite the screen pixel, ignoring the latter's previous value; it is the

default and most frequently used transfer mode.

• 'patOr' paints a black pixel if either or both the screen pixel or the pattern pixel were black; it progressively

blackens the screen.

Algorithms and Data Structures 18 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

• 'patXor' (exclusive-or, also known as "odd parity") sets the result to black iff exactly one of (screen pixel,

pattern pixel) is black. A white pixel in the pen leaves the underlying screen pixel unchanged; a black pixel

complements it. Thus a black pen inverts the screen.

'pnMode' is set by calling the predefined 'procedure PenMode(mode: integer)' [e.g. 'PenMode(patXor)'].

The meaning of the remaining predefined procedures our examples use, such as 'MoveTo' and 'LineTo', is easily

guessed. So we terminate our peep into some key details of a powerful graphics package, and turn to examples of its

use.

A graphics frame program

Reusable software is a time saving concept that can be practiced profitably in the small. We keep a program that

contains nothing but a few of the most useful input/output procedures, displays samples of their results, and

conducts a minimal dialog so that the user can step through its execution. We call this a frame program because its

real purpose is to facilitate development and testing of new procedures by embedding them in a ready-made, tested

environment. A simple frame program like the one below makes it very easy for a novice to write his first interactive

graphics program.

This particular frame program contains procedures 'GetPoint', 'DrawPoint', 'ClickPoint', 'DrawLine', 'DragLine',

'DrawCircle', and 'DragCircle' for input and display of points, lines, and circles on a screen idealized as a part of a

Euclidean plane, disregarding the discretization due to the raster screen. Some of these procedures are so short that

one asks why they are introduced at all. 'GetPoint', for example, only converts integer mouse coordinates v, h into a

point p with real coordinates. It enables us to refer to a point p without mentioning its coordinates explicitly. Thus,

by bringing us closer to standard geometric notation, 'GetPoint' makes programs more readable.

The procedure 'DragLine', on the other hand, is a very useful routine for interactive input of line segments. It

uses the rubber-band technique, which is familiar to users of graphics editors. The user presses the mouse button

to fix the first endpoint of a line segment, and keeps it depressed while moving the mouse to the desired second

endpoint. At all times during this motion the program keeps displaying the line segment as it would look if the

button were released at that moment. This rubber band keeps getting drawn and erased as it moves across other

objects on the screen. The user should study a key detail in the procedure 'DragLine' that prevents other objects

from being erased or modified as they collide with the ever-refreshed rubber band: We temporarily set

'PenMode(patXor)'. We encourage you to experiment by modifying this procedure in two ways:

1. Change the first call of the 'procedure DrawLine(L.p1, L.p2, black)' to 'DrawLine(L.p1, L.p2, white)'. You will

have turned the procedure 'DragLine' into an artful, if somewhat random, painting brush.

2. Remove the call 'PenMode(patXor)' (thus reestablishing the default 'pnMode = patCopy'), but leave the first

'DrawLine(L.p1, L.p2, white)', followed by the second 'DrawLine(L.p1, L.p2, black)'. You now have a naive

rubber-band routine: It alternates erasing (draw 'white') and drawing (draw 'black') the current rubber

band, but in so doing it modifies other objects that share pixels with the rubber band. This is our first

example of the use of the versatile exclusive-or; others will follow later in the book.

program Frame;

 { provides mouse input and drawing of points, line segments,

circles }

type point = record x, y: real end;

lineSegment = record p1, p2: point { endpoints } end;

19

This book is licensed under a Creative Commons Attribution 3.0 License

var c, p: point;

r: real; { radius of a circle }

L: lineSegment;

procedure WaitForClick;

begin repeat until Button; while Button do end;

procedure GetPoint (var p: point);

var v, h: integer;

begin

GetMouse(v, h);

p.x := v; p.y := h { convert integer to real }

end;

procedure DrawPoint(p: point; pat: Pattern);

const t = 3; { radius of a point }

begin

PenPat(pat);

PaintOval(round(p.y) – t, round(p.x) – t, round(p.y) + t,

round(p.x) + t)

end;

procedure ClickPoint(var p: point);

begin WaitForClick; GetPoint(p); DrawPoint(p, Black) end;

function Dist(p, q: point): real;

begin Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y)) end;

procedure DrawLine(p1, p2: point; pat: Pattern);

begin

PenPat(pat);

MoveTo(round(p1.x), round(p1.y));

LineTo(round(p2.x), round(p2.y))

end;

procedure DragLine(var L: lineSegment);

begin

repeat until Button; GetPoint(L.p1); L.p2 := L.p1;

PenMode(patXor);

while Button do begin

DrawLine(L.p1, L.p2, black);

{ replace 'black' by 'white' above to get an artistic drawing

tool }

GetPoint(L.p2);

DrawLine(L.p1, L.p2, black)

end;

PenMode(patCopy)

end; { DragLine }

procedure DrawCircle(c: point; r: real; pat: Pattern);

begin

PenPat(pat);

FrameOval(round(c.y – r), round(c.x – r), round(c.y + r),

round(c.x + r))

end;

procedure DragCircle(var c: point; var r: real);

var p: point;

begin

repeat until Button; GetPoint(c); r := 0.0; PenMode(patXor);

while Button do begin

DrawCircle(c, r, black);

GetPoint(p);

Algorithms and Data Structures 20 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

r := Dist(c, p);

DrawCircle(c, r, black);

end;

PenMode(patCopy)

end; { DragCircle }

procedure Title;

begin

ShowText; { make sure the text window and … }

ShowDrawing; { … the graphics window show on the screen }

WriteLn('Frame program');

WriteLn('with simple graphics and interaction routines.');

WriteLn('Click to proceed.');

WaitForClick

end; { Title }

procedure What;

begin

WriteLn('Click a point in the drawing window.');

ClickPoint(p);

WriteLn('Drag mouse to enter a line segment.');

DragLine(L);

WriteLn('Click center of a circle and drag its radius');

DragCircle(c, r)

end; { What }

procedure Epilog;

begin WriteLn('Bye.') end;

begin { Frame }

Title; What; Epilog

end. { Frame }

Example of a graphics routine: polyline input

Let us illustrate the use of the frame program above in developing a new graphics procedure. We choose

interactive polyline input as an example. A polyline is a chain of directed straight-line segments—the starting point

of the next segment coincides with the endpoint of the previous one. 'Polyline' is the most useful tool for interactive

input of most drawings made up of straight lines. The user clicks a starting point, and each subsequent click

extends the polyline by another line segment. A double click terminates the polyline.

We developed 'PolyLine' starting from the frame program above, in particular the procedure 'DragLine',

modifying and adding a few procedures. Once 'Polyline' worked, we simplified the frame program a bit. For

example, the original frame program uses reals to represent coordinates of points, because most geometric

computation is done that way. A polyline on a graphics screen only needs integers, so we changed the type 'point' to

integer coordinates. At the moment, the code for polyline input is partly in the procedure 'NextLineSegment' and in

the procedure 'What'. In the next iteration, it would probably be combined into a single self-contained procedure,

with all the subprocedures it needs, and the frame program would be tossed out—it has served its purpose as a

development tool.

program PolyLine;

{ enter a chain of line segments and compute total length }
{ stop on double click }

type point = record x, y: integer; end;

var stop: boolean;

length: real;

21

This book is licensed under a Creative Commons Attribution 3.0 License

p, q: point;

function EqPoints (p, q: point): boolean;

begin EqPoints := (p.x = q.x) and (p.y = q.y) end;

function Dist (p, q: point): real;

begin Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y)) end;

procedure DrawLine (p, q: point; c: Pattern);

begin PenPat(c); MoveTo(p.x, p.y); LineTo(q.x, q.y) end;

procedure WaitForClick;

begin repeat until Button; while Button do end;

procedure NextLineSegment (var stp, endp: point);

begin

endp := stp;

repeat

DrawLine(stp, endp, black); { Try 'white' to generate artful
pictures! }

GetMouse(endp.x, endp.y);

DrawLine(stp, endp, black)

until Button;

while Button do

end; { NextLineSegment }

procedure Title;

begin

ShowText; ShowDrawing;

WriteLn('Click to start a polyline.');

WriteLn('Click to end each segment.');

WriteLn('Double click to stop.')

end; { Title }

procedure What;

begin

WaitForClick; GetMouse(p.x, p.y);

stop := false; length := 0.0;

PenMode(patXor);

while not stop do begin

NextLineSegment(p, q);

stop := EqPoints(p, q); length := length + Dist(p, q); p := q

end

end; { What }

procedure Epilog;

begin WriteLn('Length of polyline = ', length); WriteLn('Bye.')

end;

begin { PolyLine }
Title; What; Epilog

end. { PolyLine }

Programming projects

1. Implement a simple package of turtle graphics operations on top of the graphics environment available on

your computer.

2. Use this package to implement and test a procedure 'circle' that meets the requirements listed at the end of

the section “Turtle graphics: a basic environment”.

Algorithms and Data Structures 22 A Global Text

http://creativecommons.org/licenses/by/3.0/

2. Graphics primitives and environments

3. Implement your personal graphics frame program as described in “A graphics frame program”. Your effort

will pay off in time saved later, as you will be using this program throughout the entire course.

23

