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2. Graphics primitives and 
environments

Learning objectives:

• turtle graphics

• QuickDraw: A graphics toolbox

• frame program

• interactive graphics input/output

• example: polyline input

Turtle graphics: a basic environment

Seymour Papert [Pap80] introduced the term  turtle graphics to denote a set of primitives for line drawing. 

Originally implemented in the programming language Logo, turtle graphics primitives are now available for several  

computer systems and languages.  They come in  different  versions,  but  the essential  point  is  the same as  that 

introduced in the example of the robot car: The pen (or "turtle") is a device that has a state (position, direction) and  

is driven by incremental operations “move” and “turn” that transform the turtle to a new state depending on its 

current state:

move(s) { take s unit steps in the direction you are facing }
turn(d) { turn counterclockwise d degrees }

The turtle's initial state is set by the following operations:

moveto(x,y) { move to the position (x,y) in absolute coordinates }
turnto(d) { face d degrees from due east }

In addition, we can specify the color of the trail drawn by the moving pen:

pencolor(c) { where c = white, black, none, etc. }

Example

The following program fragment approximates a circle tangential to the x-axis at the origin by drawing a 36-

sided polygon:

moveto(0, 0); { position pen at origin }
turnto(0); { face east }
step := 7; { arbitrarily chosen step length }
do 36 times { 36 sides · 10° = 360° }

{ move(step);  turn(10) } { 10 degrees counterclockwise }

In graphics programming we are likely to use basic figures, such as circles, over and over again, each time with a 

different size and position. Thus we wish to turn a program fragment such as the circle approximation above into a 

reusable procedure.
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Procedures as building blocks

A program is built from components at many different levels of complexity. At the lowest level we have the  

constructs provided by the language we use: constants, variables, operators, expressions, and simple (unstructured) 

statements. At the next higher level we have procedures: they let us refer to a program fragment of arbitrary size 

and complexity  as  a  single  entity,  and build  hierarchically  nested  structures.  Modern  programming languages 

provide yet another level of packaging: modules, or packages, useful for grouping related data and procedures. We 

limit our discussion to the use of procedures.

Programmers accumulate their own collection of useful program fragments. Programming languages provide 

the concept of a  procedure as the major tool for turning fragments into  reusable building blocks. A procedure 

consists of two parts with distinct purposes:

1. The  heading specifies an important part of the procedure's external behavior through the list of  formal 

parameters: namely, what type of data moves in and out of the procedure.

2. The body implements the action performed by the procedure, processing the input data and generating the 

output data.

A program fragment that embodies a single coherent concept is best written as a procedure. This is particularly 

true if we expect to use this fragment again in a different context. The question of how general we want a procedure 

to be deserves careful thought. If the procedure is too specific, it will rarely be useful. If it is too general, it may be  

unwieldy: too large, too slow, or just too difficult to understand. The generality of a procedure depends primarily on 

the choice of formal parameters.

Example: the long road toward a procedure “circle”

Let us illustrate these issues by discussing design considerations for a procedure that draws a circle on the 

screen. The program fragment above for drawing a regular polygon is easily turned into

procedure ngon(n,s: integer);  { n = number of sides, s = step 
size }

var  i,j: integer;

begin

j := 360 div n;

for i := 1 to n do  { move(s);  turn(j) }

end;

But, a useful procedure to draw a circle requires additional arguments. Let us start with the following:

procedure circle(x, y, r, n: integer);

{ centered at (x, y);  r = radius;  n = number of sides }
var  a, s, i: integer;  { angle, step, counter }
begin

moveto(x, y – r);  { bottom of circle }
turnto(0);  { east }
a := 360 div n;

s := r · sin(a);  { between inscribed and circumscribed polygons }
for  i := 1  to  n  do  { move(s);  turn(a) }

end;

This procedure places the burden of choosing n on the programmer. A more sophisticated, "adaptive" version  

might choose the number of sides on its own as a function of the radius of the circle to be drawn. We assume that  

lengths are measured in terms of pixels (picture elements) on the screen. We observe that a circle of radius r is of  
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length 2πr. We approximate it by drawing short-line segments, about 3 pixels long, thus needing about 2·r line  

segments. 

procedure circle(x, y, r: integer);  { centered at (x, y);  radius 
r}

var  a, s, i: integer;  { angle, step, counter }
begin

moveto(x, y – r);  { bottom of circle }
turnto(0);  { east }
a := 180 div r;  { 360 / (# of line segments) }
s := r · sin(a);  { between inscribed and circumscribed polygons }
for  i := 1  to  2 · r  do  { move(s);  turn(a) }

end;

This circle procedure still suffers from severe shortcomings:

1. If we discretize a circle by a set of pixels, it is an unnecessary detour to do this in two steps as done above:  

first, discretize the circle by a polygon; second, discretize the polygon by pixels. This two-step process is a  

source of unnecessary work and errors.

2. The approximation of the circle by a polygon computed from vertex to vertex leads to rounding errors that 

accumulate.  Thus the polygon may fail  to close,  in particular  when using integer computation with its  

inherent large rounding error.

3. The procedure attempts to draw its circle on an infinite screen. Computer screens are finite, and attempted 

drawing beyond the screen boundary may or may not cause an error. Thus the circle ought to be clipped at 

the boundaries of an arbitrarily specified rectangle.

Writing a good circle procedure is a demanding task for professionals. We started this discussion of desiderata  

and difficulties of a simple library procedure so that the reader may appreciate the thought and effort that go into 

building a useful programming environment. In chapter 14 we return to this problem and present one possible goal 

of "the long road toward a procedure 'circle'". We now make a huge jump from the artificially small environments 

discussed so far to one of today's realistic programming environments for graphics

QuickDraw: a graphics toolbox 

For  the  sake  of  concreteness,  the  next  few  sections  show  programs  written  for  a  specific  programming 

environment:  MacPascal  using  the QuickDraw library  of  graphics  routines  [App 85].  It  is  not  our  purpose  to 

duplicate a manual,  but only to convey the flavor of  a realistic graphics package and to explain enough about  

QuickDraw for the reader to understand the few programs that follow. So our treatment is highly selective and  

biased.

Concerning the circle that we attempted to program above, QuickDraw offers five procedures for drawing circles 

and related figures:

procedure FrameOval(r: Rect);

procedure PaintOval(r: Rect);

procedure EraseOval(r: Rect);

procedure InvertOval(r: Rect);

procedure FillOval(r: Rect; pat: Pattern);

Each one inscribes an oval in an aligned rectangle r (sides parallel to the axes) so as to touch the four sides of r.  

If r is a square, the oval becomes a circle. We quote from [App 85]:
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FrameOval draws an outline just inside the oval that fits inside the specified rectangle, using the current  

grafPort's pen pattern, mode, and size. The outline is as wide as the pen width and as tall as the pen height.  

It's drawn with the pnPat, according to the pattern transfer mode specified by pnMode. The pen location is  

not changed by this procedure.

Right away we notice a trade-off when comparing QuickDraw to the simple turtle graphics environment we 

introduced earlier. At one stroke, “FrameOval” appears to be able to produce many different pictures, but before we 

can exploit this power, we have to learn about grafPorts, pen width, pen height, pen patterns, and pattern transfer  

modes. 'FrameOval' draws the perimeter of an oval, 'PaintOval' paints the interior as well, 'EraseOval' paints an oval  

with the current grafPort's background pattern, 'InvertOval' complements the pixels: 'white' becomes 'black', and  

vice versa. 'FillOval' has an additional argument that specifies a pen pattern used for painting the interior.

We may not need to know all of this in order to use one of these procedures, but we do need to know how to  

specify  a rectangle.  QuickDraw has predefined a  type 'Rect'  that,  somewhat ambiguously  at  the programmer's 

choice, has either of the following two interpretations:

type Rect  = record  top, left, bottom, right: integer  end;

type Rect  = record  topLeft, botRight: Point  end;

with one of the interpretations of type 'Point' being

type Point = record  v, h: integer  end;

Exhibit  2.1 illustrates  and  provides  more  information  about  these  concepts.  It  shows  a  plane  with  first 

coordinate v that runs from top to bottom, and a second coordinate h that runs from left to right. (The reason for v  

running from top to bottom, rather than vice versa as used in math books, is compatibility with text coordinates 

where lines are naturally numbered from top to bottom.) The domain of v and h are the integers from –215= –32768 

to 215– 1 = 32767. The points thus addressed on the screen are shown as intersections of grid lines. These lines and 

grid points are infinitely thin - they have no extension. The pixels are the unit squares between them. Each pixel is  

paired with its top left grid point. This may be enough information to let us draw a slightly fat point of radius 3 

pixels at the grid point with integer coordinates (v, h) by calling

PaintOval(v – 3, h – 3, v + 3, h + 3);

Exhibit 2.1: Screen coordinates define the location of pixels.

To understand the procedures of this section, the reader has to understand a few details about two key aspects of  

interactive graphics:

• timing and synchronization of devices and program execution

• how screen pictures are controlled at the pixel level
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Synchronization

In interactive applications we often wish to specify a grid point by letting the user point the mouse-driven cursor 

to some spot on the screen. The 'procedure GetMouse(v, h)' returns the coordinates of the grid point where the 

cursor is located at the moment 'GetMouse' is executed. Thus we can track and paint the path of the mouse by a  

loop such as

repeat  GetMouse(v, h);  PaintOval(v – 3, h – 3, v + 3, h + 3) 

until stop;

This does not give the user any timing control over when he or she wants the computer to read the coordinates  

of the mouse cursor. Clicking the mouse button is the usual way to tell the computer "Now!". A predefined boolean 

function  'Button'  returns  'true'  when  the  mouse  button  is  depressed,  'false'  when  not.  We  often  synchronize  

program execution with the user's clicks by programming busy waiting loops:

repeat until Button; { waits for the button to be pressed }
while Button do; { waits for the button to be released }

The following procedure waits for the next click:

procedure waitForClick;

begin  repeat until Button;  while Button do  end;

Pixel acrobatics

The QuickDraw pen has four parameters that can be set to draw lines or paint textures of great visual variety: 

pen location 'pnLoc', pen size 'pnSize' (a rectangle of given height and width), a pen pattern 'pnPat', and a drawing 

mode 'pnMode'. The pixels affected by a motion of the pen are shown in Exhibit 2.2.

Exhibit 2.2: Footprint of the pen.

Predefined values of 'pnPat' include 'black', 'gray', and 'white'. 'pnPat' is set by calling the predefined 'procedure 

PenPat(pat: Pattern)' [e.g. 'PenPat(gray)']. As 'white' is the default background, drawing in 'white' usually serves for 

erasing.

The result of drawing also depends critically on the transfer mode 'pnMode', whose values include 'patCopy',  

'patOr',  and  'patXor'.  A  transfer  mode  is  a  boolean  operation  executed  in  parallel  on  each  pair  of  pixels  in  

corresponding positions, one on the screen and one in the pen pattern.

• 'patCopy' uses the pattern pixel to overwrite the screen pixel, ignoring the latter's previous value; it is the 

default and most frequently used transfer mode.

• 'patOr' paints a black pixel if either or both the screen pixel or the pattern pixel were black; it progressively  

blackens the screen.
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• 'patXor' (exclusive-or, also known as "odd parity") sets the result to black iff exactly one of (screen pixel, 

pattern pixel) is black. A white pixel in the pen leaves the underlying screen pixel unchanged; a black pixel  

complements it. Thus a black pen inverts the screen.

'pnMode' is set by calling the predefined 'procedure PenMode(mode: integer)' [e.g. 'PenMode(patXor)'].

The meaning of the remaining predefined procedures our examples use, such as 'MoveTo' and 'LineTo', is easily 

guessed. So we terminate our peep into some key details of a powerful graphics package, and turn to examples of its  

use.

A graphics frame program

Reusable software is a time saving concept that can be practiced profitably in the small. We keep a program that 

contains nothing but  a few of  the most  useful  input/output  procedures,  displays  samples  of  their  results,  and 

conducts a minimal dialog so that the user can step through its execution. We call this a frame program because its 

real purpose is to facilitate development and testing of new procedures by embedding them in a ready-made, tested  

environment. A simple frame program like the one below makes it very easy for a novice to write his first interactive 

graphics program.

This particular frame program contains procedures 'GetPoint', 'DrawPoint', 'ClickPoint', 'DrawLine', 'DragLine', 

'DrawCircle', and 'DragCircle' for input and display of points, lines, and circles on a screen idealized as a part of a  

Euclidean plane, disregarding the discretization due to the raster screen. Some of these procedures are so short that  

one asks why they are introduced at all. 'GetPoint', for example, only converts integer mouse coordinates v, h into a  

point p with real coordinates. It enables us to refer to a point p without mentioning its coordinates explicitly. Thus,  

by bringing us closer to standard geometric notation, 'GetPoint' makes programs more readable.

The procedure 'DragLine', on the other hand, is a very useful routine for interactive input of line segments. It  

uses the rubber-band technique, which is familiar to users of graphics editors. The user presses the mouse button 

to fix the first endpoint of a line segment, and keeps it depressed while moving the mouse to the desired second  

endpoint. At all times during this motion the program keeps displaying the line segment as it would look if the 

button were released at that moment. This rubber band keeps getting drawn and erased as it moves across other 

objects on the screen. The user should study a key detail in the procedure 'DragLine' that prevents other objects 

from  being  erased  or  modified  as  they  collide  with  the  ever-refreshed  rubber  band:  We  temporarily  set 

'PenMode(patXor)'. We encourage you to experiment by modifying this procedure in two ways:

1. Change the first call of the 'procedure DrawLine(L.p1, L.p2, black)' to 'DrawLine(L.p1, L.p2, white)'. You will 

have turned the procedure 'DragLine' into an artful, if somewhat random, painting brush.

2. Remove the call 'PenMode(patXor)' (thus reestablishing the default 'pnMode = patCopy'), but leave the first 

'DrawLine(L.p1, L.p2, white)', followed by the second 'DrawLine(L.p1, L.p2, black)'. You now have a naive 

rubber-band routine: It  alternates erasing (draw 'white') and drawing (draw 'black') the current rubber 

band, but in so doing it modifies other objects that share pixels with the rubber band. This is our first  

example of the use of the versatile exclusive-or; others will follow later in the book.

program Frame;

  { provides mouse input and drawing of points, line segments, 

circles }

type point = record  x, y: real  end;

lineSegment = record  p1, p2: point  { endpoints }  end;
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var c, p: point;

r: real;  { radius of a circle }

L: lineSegment;

procedure WaitForClick;

begin  repeat until Button;  while Button do  end;

procedure GetPoint (var p: point);

var  v, h: integer;

begin

GetMouse(v, h);

p.x := v;  p.y := h  { convert integer to real }

end;

procedure DrawPoint(p: point; pat: Pattern);

const  t = 3;  { radius of a point }

begin

PenPat(pat);

PaintOval(round(p.y) – t, round(p.x) – t, round(p.y) + t, 

round(p.x) + t)

end;

procedure ClickPoint(var p: point);

begin  WaitForClick;  GetPoint(p);  DrawPoint(p, Black)  end;

function Dist(p, q: point): real;

begin  Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y))  end;

procedure DrawLine(p1, p2: point; pat: Pattern);

begin

PenPat(pat);

MoveTo(round(p1.x), round(p1.y));

LineTo(round(p2.x), round(p2.y))

end;

procedure DragLine(var L: lineSegment);

begin

repeat until Button;  GetPoint(L.p1);  L.p2 := L.p1; 

PenMode(patXor);

while Button do  begin

DrawLine(L.p1, L.p2, black);

{ replace 'black' by 'white' above to get an artistic drawing 

tool }

GetPoint(L.p2);

DrawLine(L.p1, L.p2, black)

end;

PenMode(patCopy)

end;  { DragLine }

procedure DrawCircle(c: point; r: real; pat: Pattern);

begin

PenPat(pat);

FrameOval(round(c.y – r), round(c.x – r), round(c.y + r), 

round(c.x + r))

end;

procedure DragCircle(var c: point; var r: real);

var  p: point;

begin

repeat until Button;  GetPoint(c);  r := 0.0;  PenMode(patXor);

while Button do  begin

DrawCircle(c, r, black);

GetPoint(p);
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r := Dist(c, p);

DrawCircle(c, r, black);

end;

PenMode(patCopy)

end;  { DragCircle }

procedure Title;

begin

ShowText;  { make sure the text window and … }

ShowDrawing;  { … the graphics window show on the screen }

WriteLn('Frame program');

WriteLn('with simple graphics and interaction routines.');

WriteLn('Click to proceed.');

WaitForClick

end;  { Title }

procedure What;

begin

WriteLn('Click a point in the drawing window.');

ClickPoint(p);

WriteLn('Drag mouse to enter a line segment.');

DragLine(L);

WriteLn('Click center of a circle and drag its radius');

DragCircle(c, r)

end;  { What }

procedure Epilog;

begin  WriteLn('Bye.')  end;

begin  { Frame }

Title;  What;  Epilog

end.  { Frame }

Example of a graphics routine: polyline input

Let  us illustrate  the use of  the frame program above  in  developing a  new graphics  procedure.  We choose  

interactive polyline input as an example. A polyline is a chain of directed straight-line segments—the starting point 

of the next segment coincides with the endpoint of the previous one. 'Polyline' is the most useful tool for interactive 

input  of  most  drawings made up of  straight lines.  The user  clicks  a  starting  point,  and each subsequent  click  

extends the polyline by another line segment. A double click terminates the polyline.

We  developed  'PolyLine'  starting  from  the  frame  program  above,  in  particular  the  procedure  'DragLine',  

modifying  and  adding  a  few  procedures.  Once  'Polyline'  worked,  we  simplified  the  frame  program a  bit.  For 

example,  the  original  frame  program  uses  reals  to  represent  coordinates  of  points,  because  most  geometric  

computation is done that way. A polyline on a graphics screen only needs integers, so we changed the type 'point' to  

integer coordinates. At the moment, the code for polyline input is partly in the procedure 'NextLineSegment' and in 

the procedure 'What'. In the next iteration, it would probably be combined into a single self-contained procedure,  

with all the subprocedures it needs, and the frame program would be tossed out—it has served its purpose as a  

development tool.

program PolyLine;

{ enter a chain of line segments and compute total length }
{ stop on double click }

type point = record  x, y: integer;  end;

var stop: boolean;

length: real;
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p, q: point;

function EqPoints (p, q: point): boolean;

begin  EqPoints := (p.x = q.x) and (p.y = q.y)  end;

function Dist (p, q: point): real;

begin  Dist := sqrt(sqr(p.x – q.x) + sqr(p.y – q.y))  end;

procedure DrawLine (p, q: point; c: Pattern);

begin  PenPat(c);  MoveTo(p.x, p.y);  LineTo(q.x, q.y)  end;

procedure WaitForClick;

begin  repeat until Button;  while Button do  end;

procedure NextLineSegment (var stp, endp: point);

begin

endp := stp;

repeat

DrawLine(stp, endp, black);  { Try 'white' to generate artful 
pictures! }

GetMouse(endp.x, endp.y);

DrawLine(stp, endp, black)

until Button;

while Button do

end;  { NextLineSegment }

procedure Title;

begin

ShowText;  ShowDrawing;

WriteLn('Click to start a polyline.');

WriteLn('Click to end each segment.');

WriteLn('Double click to stop.')

end;  { Title }

procedure What;

begin

WaitForClick;  GetMouse(p.x, p.y);

stop := false;  length := 0.0;

PenMode(patXor);

while  not stop  do  begin

NextLineSegment(p, q);

stop := EqPoints(p, q);  length := length + Dist(p, q);  p := q

end

end;  { What }

procedure Epilog;

begin  WriteLn('Length of polyline = ', length);  WriteLn('Bye.') 

end;

begin  { PolyLine }
Title;  What;  Epilog

end.  { PolyLine }

Programming projects

1. Implement a simple package of turtle graphics operations on top of the graphics environment available on 

your computer.

2. Use this package to implement and test a procedure 'circle' that meets the requirements listed at the end of 

the section “Turtle graphics: a basic environment”.
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3. Implement your personal graphics frame program as described in “A graphics frame program”. Your effort  

will pay off in time saved later, as you will be using this program throughout the entire course.
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